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Needs of platforms for model standardization and high-throughput screening (HTS) of engineered

nanomaterials toxicity
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Need of ranking of customer ENMs versus a common
commercial reference ENM under a “safe-by-design” principle
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Need of safety-by-Design Ranking: Area Under The Curve vs. IC50
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Need of tiered approaches: from HT screening of many agents to genomic profiling
analysis of the selected few
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Cell-based screening Readout

Basic cellular toxicity endpoints (2-4) related

to:

= Cell viability, proliferation, cytotoxicity (e.g.,
CellTiter-Glo®, CellTiter-Blue®)

=  Apoptosis (e.g., Caspase-Glo® 3/7, 8, 9)

» Membrane integrity tests or cell number
(e.g., CellTox™ Green)

= Reactive oxygen species (e.g., ROS-
Glo™ H,0, assay)

Lysate Microarray Readout

Multiple (30-60) endpoints for generation of

broad toxicity profiles related to:

=  Apoptosis (cleaved PARP), cell cycle (e.g.,
Ki67), DNA-damage or other stress
responses (e.g., H2AX, JNK2), aberrant
differentiation, (e.g., vimentin) and
inflammation (e.g., NF-kB)

= Other specific toxicity pathway markers (e.g.,
Nrf2/ARE, MTF1)

Bioinformatics Readout

Gene ontologies, molecular networks and single
genes (>100) related to toxic mode-of-action

= Use of genomic signatures (biomarkers) to study
adverse effects of chemicals

» Modeling of the toxic response

= Connectivity mapping (to find similar profiles) in a
database of well-characterized compounds

= Integrative analysis across all assay types

Adapted from: Kohonen et al. Basic Clin Pharmacol Toxicol. 115:50-8 2014; Grafstrém et al, Altern Lab Anim. 43:325-32 2015




Need of new concepts for applying Omics in Safety Evaluations

Modelling together large collections of gene expression and
high-throughput cellular screening profiles (i.e., «Big Data»)
should generate a first attempt of toxome description

Such a description should be able to serve as a «Predictive
Toxicogenomics Space (PTGS)» as it should capture toxicity
mechanisms and pathological effects

Bioinformatics-based validation against existing and coming data
sets should prove the extent of usefulness of a PTGS for:

predicting Key Events for cellular and organ (e.g., liver) toxicity
effects,

analyzing dose-dependent relationships

all to be useful to Adverse Outcome Pathway (AOP) studies.



Summary of the PTGS safety scoring concept
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« Avirtual cellular toxicity/non-toxicity probability estimate intrinsic to the omics-data

 New genes, mechanisms and concepts to the toxicogenomics field, accounting for existing cellular
toxicity reactions

 Mechanistically validated calculation of NOEL/LOEL/toxic exposure thresholds for agent effects

« Grouping of chemicals into mechanistically similar classes for read-across safety assessment,

« Coverage of adverse outcome pathways-coupled toxicity effects involving multiple transcription
factors/co-regulators, e.g. tumor suppressor 53,

* Probabilistic prediction of liver toxicity and pathology, including severity grade, from data obtained in
cultured cells (e.g., rat/human hepatocytes) and laboratory animals (e.qg., in rats)

* Prediction of dose/concentration in blood causing human drug-induced liver injury (DILI) from
hepatocyte experiments is superior to, and complementary to, existing tests on the market.



Conclusions-Adhering to Future Data and Tool Needs

ENMs safety evaluation is achievable at 384/1536-well formats using the
human lung epithelial cell [ine BEAS-2B

Cell density, exposure time, culture with or without serum, dispersion
protocols, storage stability, dilution effects, etc. can be rapidly assessed
and integrated into standardized HT testing protocols

ENMs demonstrate dose-dependent toxicity over a broad range of
concentrations; the HT analyses consider possible assay interferences

HTS-generated results agree with published results under lower
throughput

Time lapse imaging serve to validate the viability/toxicity assays

Combined HTS, Array, and Omics-based approaches form tiered
approaches to ENM safety evaluation and “bioidentity” definition

Overall, HT/HC technologies are key to rapid knowledge generation,
being a systems Dbiology-based safe innovation approach to

functionalization of ENMs
BHENM
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