

ETSS AG Engineering, technical and scientific services

Sustainable Nanotechnologies

European SUN project on "Sustainable Nanotechnologies" of the EU 7th Framework funding.

Stochastic software for (env.)exposure, (eco)tox and (env.)risk

Fadri Gottschalk

ENM Basel 10.02.2016

Outline

Ecotox

User tool on PSSD (probabilistic species sensitivity distributions)

Briefly something to the method

R-package (incl. version for Excel users)

GUI (graphical user interface)

Environmental release/exposure/(risk)

User tool on PMFA (probabilistic material flow analysis)

Briefly something to the method

R-package (incl. version for Excel users)

GUI

Discussion on strengths and next improvement steps, terms of use

PSSD tools

DESCRIPTION file.

Help Pages

createPNECModell	createPNECModell		
createPSSDModell	createPSSDModell		
loadSpeciesDataFromExcel	loadSpeciesDataFromExcel		
plotCdf	plotCdf		
plotPdf	plotPdf		
plotPdfPNEC	plotPdfPNEC		
rawSpeciesData	rawSpeciesData	0	0
triangulsimleft	triangulsimleft	•	00
triangulsimright	triangulsimright	0	1 🛅
			🕇 S

NOEC

Probabilistic Species Sensitivity Distributions (PSSD) modeling: for risk calculation

Wang et al. 2016. Science of the Total Environment.

Coll et al. 2015. Nanotoxicology.

Gottschalk & Nowack 2013. Integrated Environmental Assessment and Management.

Gottschalk et al. 2013. Environ. Toxicol. Chem.

First PSSD simulations in 2013

Modeling procedure

PSSD for species (representing an environmental compartment)

Data needed for PSSD

1. Toxicological endpoints and assessment factors (AF)

III Data Table 🔺 Plot VPSSD 🔺 Plot VPNEC

	Species name	Toxic Endpoint	Concentration	Unit of Endpoint	AF short- long	AF observed- effect	AF lab- nature	Species Sensitivity
1	Curcubita pepo, zucchini	HONEC	500000	micro/l	1	1	1	5e+06
2	Eisenia veneta, earthworm	EC50	176000	micro/l	1	10	1	17600
3	х	LC50		micro/l	1	1	1	
4	х	LC50		micro/l	1	1	1	
5	х	LC50		micro/l	1	1	1	

2. Uncertainty and variability on such data (as shown in the next slide)

Assessment factors (uncertainty/variability factors) for PSSD

- Confidence intervals as a fraction that reflects the uncertainty range on both sides of the assessment factors (3 factors)
- A fraction that reflects the uncertainty range (confidence interval) on the left hand side of the lowest and the right hand side of the highest toxicological endpoint used for one single species (2 factors)

Typical PSSD simulation outputs

Exercise output based on unadjusted Empa data for nano-SiO₂

PSSD simulation outputs cont.

Fictional R-package output

Cdf of PSSD

PSSD simulation outputs cont.

Fictional R-package output examples

Cdf of PSSD 0.5 0.1 Species_G Specie_E 0.4 0.8 Specie F Species M Species N 0.6 0.3 Species K Density Density Species_C Species L 0.4 Species B N o. Species I Species H 0.2 Species D 0.1 Species A 0.0 0.0 10 -5 5 0 log(µg/l) 2 0 6 8 4 µg/l PNEC= Predicted no effect concentrations = 5% quantile of each PSSD curve

> **ETSS AG** Engineering, technical and scientific services

Pdf of PNEC

PSSD simulations in risk quantifications

First quantifications in 2013

PSSD simulations in risk quantifications cont.

- — PEC (surface water)

--- PEC (sewage treatment effluent)

- PSSD PNEC

Short and simplified demonstration PSSD R-Package

createPSSDModell {PSSD}

R Documentation

createPSSDModell

Description

function to create a probabilistic secies sensitivity distribution (PSSD) modell

Usage

```
createPSSDModell(T_data, PSSD_simulations = 1, PSSD_length = 100,
species_length = 10<sup>2</sup>, cv_factor1 = 0.5, cv_factor2 = 0.5,
cv_factor3 = 0, cv_low_end = 0.5, cv_high_end = 0.5,
interval_length = 10<sup>2</sup>)
```

Arguments

T_data	A nummeric matrix with nrow = 100 and ncol = 100
PSSD_simulations	A number for the quantity of PSSDs to be computed
PSSD_length	A number for the quantity of the model output values for the PSSD
species_length	A number for the quantity of the model output values of the PSSD of one single species
cv_factor1	A fraction that reflects the uncertainty range (confidence interval) on both sides of the first assessment factor (short to long term toxicity)
cv_factor2	A fraction that reflects the uncertainty range (confidence interval) on both sides of the second assessment factor (extrapolation from the observed effect concentrations into no effect concentrations)
cv_factor3	A fraction that reflects the uncertainty range (confidence interval) on both sides of the third assessment factor (expected differences between lab based experimental conditions and natural conditions)
cv_low_end	A fraction that reflects the uncertainty range (confidence interval) on the left hand side of the lowest toxicological endpoint used for one single species
cv_high_end	A fraction that reflects the uncertainty range (confidence interval) on the right hand side of the highest toxicological endpoint used for one single species
interval_lenth	A number for the quantity of the model output values of the interval distributions that are the distributions between all the toxicological endpoints collected for a particular species
Value	
a matrix	

Short and simplified demonstration PSSD GUI

PSSD input

Add Species	
Select endpoint	
NOEC	•
Select numeric endpoint	
Select metric unit for endpoint	
ng/l	•
Assessment Factor (AF)	
Extrapolation short-long term effect	10
1 1.9 2.8 3.7 4.6 5.5 6.4 7	7.3 8.2 9.1 10
Extrapolation observed effect into no effect	10
Ö <u> </u>	
1 1.9 2.8 3.7 4.6 5.5 6.4 7	7.3 8.2 9.1 10
Extrapolation from lab to natural conditions	10
1 1.9 2.8 3.7 4.6 5.5 6.4 7	7.3 8.2 9.1 10
+ ADD - DELETE Select row to be deleted	

PMFA tools

Probabilistic Material Flow Analysis (PMFA)

Documentation for package 'PMFA' version 1.0.0

DESCRIPTION file.

Help Pages

PMFA-package	What the package does (short line) ~~ package title ~~	-
<u>createFateBox</u>	createFateBox	
<u>createInputBox</u>	createInputBox	
createPMFAModell	createPMFAModell	
<u>createTransferBox</u>	createTransferBox	
Fate	Fate	$\Theta \Theta \Theta$
Input	Input	P 🛅 🗊 层
loadExcelData	loadExcelData	A Carus 1
Message	Message State of Simulation	T Start L
PlotStatesVolumesTransfers	PlotStatesVolumesTransfers	Bearbeiten
PMFA	What the package does (short line) ~~ package title ~	📄 🚽 🛃 Ausf
Transfer	Transfer	Einfügen 🥥 Lösc

Uniform

Exposure (mass transfer) model

Gottschalk, Nowack et al. 2009-2015 Sun, Bornhöft, Nowack et al. 2014and other

Basic idea: transfer coefficients (TC)

Reaction of the system

Data needed for PMFA

2750 model input values (needed)

Main boxes

Output interpretation

Model input data and distributions

Material input

Material input into the system
Uniform
Uniform
Triangular
Normal
Bootstrapping
Bayes Monte Carlo
Time periods of simulation
1 20
1 3 5 7 9 11 13 15 17 19 20

Name of category

Percentage of total use
Distribution of percentage of total use
Uniform
Uniform
Triangular
Normal
Bootstrapping
Bayes Monte Carlo
Material degradation during use
Uniform

Transfer to freshwater

Material transfer to freshwater

Uniform	•
Uniform	
Triangular	
Normal	
Bootstrapping	
Bayes Monte Carlo	

Basically, we need only two different types of data:

I) Material input into (internal/external in/to each main box) the system and II) transfer (covers geographical translocation, elimination, dissolution etc.) inside the system.

Choice of probability distributions

interacts with data quality and quantity, for the selection a decision tree approach helps (next slide)

Data needed for PSSD

Shaping distributions

Chose ... if... (very simplified version of decision support, some basis for a decision tree that can be developed)

Uniform: the minimal and the maximal must be taken as extremes ... other values can be ignored...

Triangular: the minimal and the maximal value are taken as extremes, the median/mean value computed as the peak (most frequent), other values can be ignored....

Normal: if you have some data, ... need to account for very high and very low values ... with low probability (that however cannot be excluded)...

Bootstrapping: only the raw values should be fed into the model (randomly, equally and repetitively) and taken to compute an empirical distribution, no evidence that other values (between data points) should be considered

Bayes Monte Carlo: combine bootstrapping (see above) with some expert based prior distribution (assumption) that ranges from 0 to 1 for example

Exposure (mass transfer) model cont.

Red: Modal values

Blue: One specific (non-sense) scenario

Typical PMFA simulation outputs

Flow chart based e.g. on modal values (the most frequent value)

Do not take a single Monte Carlo scenario as output for evaluation!

Typical PMFA simulation outputs

Short and simplified demonstration PMFA R-Package

createPSSDModell {PSSD}

R Documentation

createPSSDModell

Description

function to create a probabilistic secies sensitivity distribution (PSSD) modell

Usage

```
createPSSDModell(T_data, PSSD_simulations = 1, PSSD_length = 100,
species_length = 10<sup>2</sup>, cv_factor1 = 0.5, cv_factor2 = 0.5,
cv_factor3 = 0, cv_low_end = 0.5, cv_high_end = 0.5,
interval_length = 10<sup>2</sup>)
```

Arguments

T_data	A nummeric matrix with nrow = 100 and ncol = 100
PSSD_simulations	A number for the quantity of PSSDs to be computed
PSSD_length	A number for the quantity of the model output values for the PSSD
species_length	A number for the quantity of the model output values of the PSSD of one single species
cv_factor1	A fraction that reflects the uncertainty range (confidence interval) on both sides of the first assessment factor (short to long term toxicity)
cv_factor2	A fraction that reflects the uncertainty range (confidence interval) on both sides of the second assessment factor (extrapolation from the observed effect concentrations into no effect concentrations)
cv_factor3	A fraction that reflects the uncertainty range (confidence interval) on both sides of the third assessment factor (expected differences between lab based experimental conditions and natural conditions)
cv_low_end	A fraction that reflects the uncertainty range (confidence interval) on the left hand side of the lowest toxicological endpoint used for one single species
cv_high_end	A fraction that reflects the uncertainty range (confidence interval) on the right hand side of the highest toxicological endpoint used for one single species
interval_lenth	A number for the quantity of the model output values of the interval distributions that are the distributions between all the toxicological endpoints collected for a particular species
Value	
a matrix	

Short and simplified demonstration PMFA GUI

PSSD input

Add Species						
Name of species						
Select endpoint						
NOEC						•
Select numeric endpoint						
Select metric unit for endpoint						
ng/l						•
Assessment Factor (AF)						
Extrapolation short-long term effect						10
1 1.9 2.8 3.7 4.6	5.5	6.4	7.3	8.2	9.1	10
Extrapolation observed effect into no ef	fect					10
• <u>•••••</u> •••						
1 1.9 2.8 3.7 4.6	5.5	6.4	7.3	8.2	9.1	10
Extrapolation from lab to natural conditi	ions					10
1 1.9 2.8 3.7 4.6	5.5	6.4	7.3	8.2	9.1	10
+ ADD - DELETE Select row to be deleted						
SIMULATION RESET DATA						

Conclusions

State of development

- PSSD R-package (incl. version for Excel users) one month finalization
- GUI (graphical user interface) 2-3 months for finalization and
- PMFA R-package (incl. version for Excel users) one month finalization

GUI 2-4 months for finalization

Improvements needed

Speed versus e-mail notification

Package description

Decision tree distribution selection

Terms of use

Work for DSS (decision support system) of SUN

Publish R-packages?

GUI focused also on commercial stakeholders or internal use

Thanks for questions and attention!

ETSS researches

Specialized in dealing with probabilities, uncertainties and diversity.

UNCERTAINTY RESEARCH

We are solutions-oriented and seek to resolve complex issues in the most pragmatic way possible.

RISK ANALYSIS

We will calculate future scenarios where this is reasonable and quantitatively possible.

DATA MANAGEMENT

We are happy to assist you in a wide variety of tasks, from simple to difficult works.

DECISION MAKING

We focus our attention on the queries and demands of our clients and customers.

ENVIRONMENTAL IMPACT

Our evaluation is based on professional experience, methodological competence and good sense.

MATERIALFLOW CONSULTING

We develop individual customer-oriented solutions.

FEASIBILITY STUDIES

We show commitment to your project and involve all partners in the project evaluation.

DIES QUALITY MANAGEMENT

t Early fault avoidance is the best way to avoid late and high compensation costs.

ETSS AG Engineering, technical and scientific services

ETSS AG
 Chaflur 136B
 7558 Strada, Schweiz
 +41 (0)81 860 10 85

contact@etss.ch

 \succ

ETSS AG
 Fortunagasse 15
 8001 Zürich, Schweiz
 +41 (0)43 233 82 67