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GLOSSARY 
 

Abbreviation / acronym Description 

AE associative events 
Ag Silver 
AO adverse outcome 
AOP adverse outcome pathways 
API application programming interface 
BP biological process  
CC cellular component 
CTD comparative toxicogenomics database  
CV cross validation  
ENMs Engineered nanomaterials 
FC fold change 
GO gene ontology 
GSEA gene set enrichment analysis 
HAEC human aortic endothelial cells 
HAR high aspect ratio  
HUVECs human umbilical vein endothelial cells 
KE key events  
MF molecular function  
MWCNT multi walled carbon nano tubes 
QSAR quantitative structure-activity relationship 
p value calculated probability 
PBMCs peripheral blood mononuclear cells 
PCF protein corona fingerprint 
PVP poly-vinylpyrrolidine 
SA simulated annealing 
SiO2 silicon dioxide 
TiO2  titanium dioxide 
ZnO zinc oxide 

 
Detailed description of terms: http://www.enanomapper.net/library/enm-dictionary  
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1. EXECUTIVE SUMMARY 
 
This deliverable describes the mechanistic modelling task which was developed within WP 4 of 
eNanoMapper project. Three main issues were handled in this task: 1) we initiated a ENMs portal with 
nanosafety-relevant pathways to WikiPathways, an open database for biological pathways, as a basis for 
pathway analysis; 2) we established workflows for ENMs data analysis, (mainly transcriptomics data), to 
reveal the significantly and differently affected biological pathways by a variety of exposure scenarios and 
ENMs and we added this information to the eNanoMapper database. 3) Additionally, we are further 
describing the implementation of pathway descriptors, an integration methodology to group omics data 
for QSAR modelling. A case study is presented for descriptors created with information derived from gene 
ontologies using a proteomics data set.  
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2. INTRODUCTION 
The purpose of this deliverable 4.4 was to develop strategies to predict potential effects of ENM by taking 
different mechanisms of action into account. We focused on mechanistic effects of ENMs on biological 
pathways and modelling of the protein corona effect. 
Biological entities do not function alone but in a network of interaction. Gene expression e.g. is highly 
regulated and the expressed gene regulates the expression of other genes directly or indirectly. These 
interactions can be drawn in a scheme for better visualization and intuitive understanding of the relation. 
The oxidative stress pathway for example (Figure 1) visualizes the gene expression as a response to 
reactive oxygen species and it is immediately clear that reactive oxygen species trigger the induction of 
antioxidant genes like SOD (1-3) over a cascade of events including MAP kinase. 

 

Figure 1: Oxidative stress pathway from WikiPathways (WP408). 

Repositories of pathways like this can be used to analyze, quantify and visualize experimental data - 
transcriptomics, proteomics and metabolomics data. Events like exposure to ENMs trigger changes in 
gene expression and our hypothesis is that similar ENMs trigger similar biological pathways. This means, 
that pathway approaches can be used to predict and to classify nanomaterial safety according to their 
effects on biological systems.  
One of the approaches we considered was an enrichment methodology of omics data aiming to integrate 
biological findings and create descriptors which can then be easily included to QSAR predictive models. 
Pathway databases, such as the Gene Ontology database, are summarizing information about biology 

http://www.wikipathways.org/index.php/Pathway:WP408
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entities and group genes into meaningful biological groups. These valuable information can be integrated 
into transcriptomics data to group entities (e.g. genes or proteins) whilst keeping all the information 
intact. Thus, in this case all data are considered, rather than filtered given the biological question or 
statistical hypothesis of interest, and grouped. In accordance to well-known Gene Set Enrichment Analysis 
(GSEA) methods (Subramanian et al., 2005), we have considered those groups of genes that are mostly 
enriched in the data. 
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3. MECHANISTIC MODELLING 

3.1. MECHANISTIC MODELLING: PATHWAY DATABASE 

WIKIPATHWAYS 

WikiPathways is an open user curated database for biological pathways [Kutmon 2015, Kelder 2012, 
Kelder 2009].  A typical biological pathway consists of nodes (genes, gene products or metabolites) and 
edges (interactions like conversion, stimulation, inhibition, or binding) connecting them with each other 
(Figure 1 and 2). Every node has an annotation linking it to a database and the information stored there. 
Over a special tool - BridgeDb - the database information is linked with other databases for the same 
entity. E.g. in Figure 2 the pop-up window for MAPK10 is shown. MAPK10 was annotated by Entrez Gene 
identifier (5602) and BridgeDb added the cross-link for MAPK10 on other databases like Ensembl, HGNC, 
RefSeq, UCSC Genome Browser, UniGene, Gene Ontology and some more. This makes WikiPathways 
repository multifunctional for a variety of data input.  
 

 
 

Figure 2: Interactive pathway on WikiPathways. The nodes are annotated with database identifiers e.g. 
Entrez Gene, and the mapping tool adds the associated identifiers from other databases (e.g. Ensembl) 

and gene ontology. 
 
There are currently (June 2016) 2510 public pathways available. The biggest subgroup is human pathways 
with 822 pathways covering 6795 unique genes. Furthermore, WikiPathways provides interactive 
pathways readily available for analysis. The database can be used by tools like PathVisio to analyse 
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transcriptomics, proteomics or metabolomics data and has an API for access to the data. Pathways can be 
downloaded in different formats like pathways (GPML), as images (PDF, TIFF), or gene lists.   
 
For eNanoMapper we created six new pathways, uploaded them to the repository and set up a portal for 
ENMs (Portal:Nanomaterials). These pathways visualize the mechanistic action of ENMs leading to 
different experimental (or in vivo) outcomes. The pathways are the following: 

 overview of nanoparticle effects Pathway:WP3287    

 nanomaterial induced apoptosis Pathway:WP2507 

 nanoparticle triggered autophagic cell death Pathway:WP2509 

 nanoparticle triggered regulated necrosis Pathway:WP2513 

 nanoparticle-mediated receptor signaling Pathway:WP2643 

 lung fibrosis pathway Pathway:WP3624  
 

 
 

Figure 3: Portal:Nanomaterials on WikiPathways (Portal:Nanomaterials). 

TUTORIAL: HOW TO MAKE A PATHWAY 

A tutorial was developed on how to make a new pathway using PathVisio software and how to upload it 
to WikiPathways. The tutorial is available under this link: how-make-a-pathway. It is a straightforward 
summary of the help and guideline sections of the WikiPathways website and contains the basic steps of 
creating a pathway: 

1. Drawing nodes and edges, e.g.  genes, gene products, metabolites or pathways and connecting 
them with the proper interactions, e.g. conversion, stimulation inhibition or catalysis 

2. Adding identifiers to the nodes, e.g. ENSG00000117560 of Ensembl database to FASL (Fas ligand) 
3. Adding literature references and a proper pathway description 
4. Upload to WikiPathways 

http://www.wikipathways.org/index.php/Portal:Nanomaterials
http://www.wikipathways.org/index.php/Pathway:WP3287
http://www.wikipathways.org/index.php/Pathway:WP2507
http://www.wikipathways.org/index.php/Pathway:WP2509
http://www.wikipathways.org/index.php/Pathway:WP2513
http://www.wikipathways.org/index.php/Pathway:WP2643
http://wikipathways.org/index.php/Pathway:WP3624
http://www.wikipathways.org/index.php/Portal:Nanomaterials
http://www.enanomapper.net/library/how-make-pathway
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THE MAKING OF THE LUNG FIBROSIS PATHWAY  

A case study for capturing existing knowledge for a toxicity pathway relevant to nanosafety is presented 
in this subsection in more detail. Information and omics data related to pulmonary fibrosis and high aspect 
ratio (HAR) ENMs were extracted and mined from literature and databases. Pulmonary fibrosis is a well-
studied human chronic disease, caused by a wide diversity of environmental exposures, and the 
cumulative number of publications between 1975 and 2010 reached beyond 17 000 papers [Todd 2012]. 
We first focused our search on reviews and general schemes of fibrosis development and progression, 
such as the one by Todd et al. (2012). In addition we emphasized reviews discussing the effects of ENMs, 
particularly high aspect ratio (HAR), such as the review by Vietti et al (2016). We also concentrated on 
reviews discussing alterations on molecular level related to pulmonary fibrosis or fibrogenic changes 
following exposure [Todd 2012; Vietti, 2016]. 
 
A set of 64 genes with direct evidence of association (either as biomarker or as therapeutic target) with 
pulmonary fibrosis in the Comparative Toxicogenomics Database (CTD) were listed and used to build the 
pathway [Grondin 2016]. GeneMANIA [Warde-Farley 2010] was used to identify interaction links between 
the genes and ConsensusPathDB [Kamburov 2011] was used to identify groups of genes enriched for 
pathways and functions (KEGG, WikiPathways and Gene Ontologies). This information was then used to 
build connections and interactions between the different elements of the pathway (genes, pathways and 
general scheme elements). Finally, the putative AOP (adverse outcome pathway) for pulmonary fibrosis 
and the associated omics data analysis in Labib et al. (2016) were used to assign AOP events (key events 
[KEs], associative events [AEs] and adverse outcome [AO]) to the different genes and gene groups in the 
pathway. The gathered data resulted in an employable WikiPathways for this adverse outcome.  
 
In conclusion, WikiPathways templates are expected to be highly useful for computational analysis of 
large-scale omics data, serving diversely for: i) gene set enrichment analysis, ii) pathway enrichment 
analysis among differentially expressed genes, iii) integration into AOP-based testing strategies, iv) 
application as descriptors in (Q)SAR approaches, and finally, iv) for grouping and read across among ENMs, 
coupled to identification of specific pathway-activating ENMs. 
 
WikiPathways is species specific. To convert a pathway for a different species it is possible to copy a 
pathway but it is still necessary to adapt the identifiers for genes and gene products. For the lung fibrosis 
pathway a homologue pathway was made for mouse (Pathway:WP3632) and another for rat is in 
preparation. 
 

http://www.wikipathways.org/index.php/Pathway:WP3632
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Figure 4: Human lung fibrosis pathway (WP3624). 

3.2. MECHANISTIC MODELLING:  CASE STUDIES 

In this chapter we present several case studies of the nanomaterial pathway analysis workflow and one 
case study for the Chipster bioinformatics workflow based on tutorials 2,3,4,5 (please see subsection 3.5) 
which provide detailed instructions on how to perform mechanistic modelling using nanomaterial 
transcriptomics data. The workflows proposed in the tutorials were used as a standard except for pathway 
analysis, where the desktop version of PathVisio was used instead of the web tool. The datasets are 
summarized in Table 1. The experimental information is shortly given as type of in vitro or in vivo study 
and the nanomaterial which it was exposed to. The data is either publically available from previously 
published studies or was provided by project partners or other research institutes. The accession number 
for the dataset and the original publication are listed in Table 1. 
 
 
 
 
 
 
 

http://www.wikipathways.org/index.php/Pathway:WP3624
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Table 1: Summary of data used for nanoparticle pathway analysis. 

Experiment Data source published in 

human intestine cell line (Caco-2) exposed 
to Ag nanoparticles 

GSE62253 Boehmert et al. 2014 

human bronchial epithelial cell line (BEAS-
2B) exposed to MWCNT 

E-GEOD-63552 
E-GEOD-63559 

Nymark et al. 2015 

human aortic endothelial cells exposed to 
TiO2 nanostructured surface 

E-GEOD-17676) Peng et al. 2010 

human hepatic stellate cells exposed to 
ZnO 

GSE60159 
 

Osmond-McLeod et al. 
2014 

human T-cell line (Jurkat) exposed to ZnO GEOD39330 Tuomela et al. 2013 

human umbilical vein endothelial cells 
(HUVECs) exposed to fullerenol 

E-GEOD-3364 Yamawaki et al. 2006 
Smeets et al. (in 
preparation) 

Human small alveolar epithelial cells (SAE) GSE42067 Tilton et al, 2014 

in vivo Ag nanoparticle feeding study with 
rats, analysis of liver transcriptome 

RIKILT (Wageningen, NL) unpublished data 

in vivo Ag nanoparticle feeding study with 
rats, analysis of PBMCs transcriptome  

RIKILT (Wageningen, NL) unpublished data 

in vivo SiO2 nanoparticle feeding study with 
rats, analysis of liver transcriptome 

RIKILT (Wageningen, NL)  van der Zande et al. 2014 

in vivo SiO2 nanoparticle feeding study with 
rats, analysis of gut transcriptome 

RIKILT (Wageningen, NL)  van der Zande et al. 2014 

 
 

PATHWAY ANALYSIS OF AG ENMS EFFECTS ON HUMAN CACO-2 CELLS 
The aim of this study was to investigate the changed pathways in a human intestinal cell line model after 
being exposed to low and high doses of Ag nanoparticles and Ag solution. The significant changes of gene 
expression were calculated using ArrayAnalysis.org and used for performing pathway statistics using 
PathVisio. The different experimental groups were compared to the untreated (culture medium) control 
group. A pathway was considered as changed if the number of differentially expressed genes was higher 
than 3, z-score higher than 1.96 and the change was significant (p < 0.05). 
Low dose ENMs and Ag solution did not reveal changes in biological pathways. High dose of Ag 
nanoparticles showed changes in metal ion homeostasis (namely Zinc and Copper homeostasis). Several 
oxidative stress, apoptosis and inflammation pathways were changed: NRF2 pathway, Quercetin and Nf-
kB/ AP-1 Induced Cell Apoptosis, and Oxidative Stress. 
While low doses of Ag ENMs and the tested concentration of Ag ion solution had no relevant effect on 
biological pathways of Caco-2 cells, high dose of Ag ENMs activated several oxidative stress, apoptosis 
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and inflammation related pathways. Additionally, metal homeostasis pathways were affected possibly 
due to compensation reaction of the cells.  
 
Cell model: human intestinal epithelial (Caco-2) cells 
Nanoparticle: Ag ENMs in high (25 µg/ml) low (2.5 µg/ml) dose or AgNO solution vs. control 
Pathways changed: Oxidative stress, inflammation, metal homeostasis (Table 2) 
 
Because of clarity the extensive pathway analysis tables of the following are given in the appendix. 
 

PATHWAY ANALYSIS OF MULTI-WALLED CARBON NANOTUBES ON GENE EXPRESSION IN 
BRONCHIAL EPITHELIAL BEAS 2B CELLS 
One class of the most commercialized ENMs is multi-walled carbon nanotubes (MWCNTs). Previous 
studies have indicated that MWCNTs have possible toxic effects on human cells, such as inflammation, 
production of reactive oxygen species and apoptosis. The aim of this study was to determine the effect of 
low doses of MWCNTs on gene expression in bronchial epithelial BEAS 2B cells using a systems biology 
approach. An existing suitable dataset was chosen on ArrayExpress. This dataset was analyzed with a 
systems biology approach. Pathway analysis was done with PathVisio. In response to the nanomaterial, 
567 genes were found to be differentially expressed in the pathway analysis (LogFC < -0.25 OR LogFC > 
0.25 AND P-value < 0.05). A broad range of pathways were affected. Notable is the amount of neurological 
involved pathways. Extension of the pathways with miRNAs and TFs in the analysis showed that miRNAs 
are less likely to be involved in the regulation of gene expression after exposure to MWCNTs. MWCNT 
induced changes in gene expression in a broad range of biological processes, including neurological 
processes, inflammation inhibition and a response to reactive oxygen species. 
 
Cell model: human bronchial epithelial BEAS 2B cells 
Nanoparticle: MWCNTs 
Pathways changed: Neurological processes, inflammation inhibition, and response to reactive oxygen 

species (Annex Table 1) 
 

Table 2: Summary of changed pathways for high dose Ag nanoparticle treated Caco-2 cells (cut off: 
logFC [1]). 

Pathway 

positive 

(r) 

measured 

(n) total % 

z- 

score p-value  

Zinc homeostasis 10 30 39 33.33% 6.1 0 

NRF2 pathway 20 122 145 16.39% 4.63 0 

Quercetin and Nf-kB/ AP-1 
Induced Cell Apoptosis 5 15 27 33.33% 4.31 0 

Triacylglyceride Synthesis 6 24 37 25.00% 3.77 0.002 

Farnesoid X Receptor  
Pathway 5 19 21 26.32% 3.59 0.003 

Oxidative Stress 6 26 32 23.08% 3.52 0.002 

Fatty Acid Omega Oxidation 4 14 16 28.57% 3.43 0.004 
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Transcriptional activation by 
NRF2 4 14 20 28.57% 3.43 0.008 

Copper homeostasis 8 46 58 17.39% 3.1 0.009 

PATHWAY ANALYSIS OF NANOSTRUCTURED TIO2 SURFACES IN HUMAN AORTIC ENDOTHELIAL 
CELLS 

In this genomics study, the research goal was to find differentially expressed genes in primary human 
aortic endothelial cells (HAECs) after growing the cells for 24 hours on a TiO2 nanotube array with different 
diameter sizes (30nm and 100nm). 
The dataset (E-GEOD-17676) containing the microarray gene expression data was provided by the online 
genomic database ArrayExpress. ArrayAnalysis was used for statistical analysis. PathVisio was used for 
pathway visualization and pathway analysis. 
Statistical analysis revealed that the different diameter sizes of the nanotubes did not have a lot of effect 
on the amount of gene expression. Pathway analysis showed that mainly genes in pathways involved in 
inflammatory and proliferative processes were significantly changed, having a positive effect on 
proliferation and decreasing the inflammatory genes and proteins. Network analysis did identify a 
decreased expression of the transcription factor E2F1, also involved in apoptotic and inflammatory 
pathways. 
Results suggest that TiO2 nanotubes in an array mesh with a diameter size of 100 nm have an anti-
inflammatory and pro-proliferative effect. Future research in the field of proteomics and biomedicine is 
needed to validate these findings and expand them further. 
 
Cell model: human aortic endothelial cells 
Nanomaterial: TiO2 nanostructured surface 
Pathways changed: anti-inflammatory and pro-proliferative pathways (Annex Table 2) 
 

PATHWAY ANALYSIS OF ZINC OXIDE EFFECTS ON GENE EXPRESSION OF HUMAN HEPATIC 
STELLATE CELLS AND IMMUNE-COMPETENT CELLS 
 
Zinc oxide (ZnO) is a nanoparticle used in many products such as sunscreens, cosmetics and biomedical 
instruments. Although it’s widespread use, there are still some concerns about the toxicity of ZnO 
nanoparticles. There are some studies performed on cytotoxicity of ZnO in human cells using cell viability 
assays, but the number of studies done on gene expression remains limited. Therefore we investigated 
the effects of ZnO nanoparticles on human hepatic stellate cells and immune-competent cells on a 
pathway level using gene expression data. We used two different datasets to perform pathway analysis 
and network analysis. The first dataset studied the use of a surface coating on the cytotoxicity in human 
hepatic stellate cells. The second dataset investigated the cytotoxicity of nine modified ZnO nanoparticles 
in Jurkat cells, HMDM and MDDC cells. We found in the first dataset that the cells treated with the 
uncoated ZnO nanoparticles have a lot more differentially expressed genes than in the cells treated with 
the coated ZnO nanoparticles. Pathway analysis showed that for many genes there is an opposite effect 
in gene expression between the two groups. Furthermore, some genes are only up- or downregulated by 
the uncoated ZnO nanoparticles. In the second dataset, we found a dose-dependent effect of ZnO-4 
treatment on the gene expression in Jurkat cells. In Jurkat cells and MDDC cells the number of 
differentially expressed genes decreases over time, but in HMDM cells this increases. Pathway analysis 
showed that genes involved in the immune response are activated. In both datasets, genes that encode 
for metallothioneins are upregulated. Whether this is a direct effect of ZnO or the free radicals formed by 
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ZnO needs to be investigated. We also observed many differentially expressed genes that encode for 
proteins with cysteine elements. This study showed that ZnO treatment has an effect on the gene 
expression in human immune-competent cells and hepatic stellate cells. With the use of pathway and 
network analysis the effect on gene expression can be visualized and interpreted in a broad way. 
 
Cell model: human hepatic stellate cells  
Nanoparticle: 4 different types of coated and uncoated ZnO nanoparticles 
Pathways changed: immune response, metallothionins (Annex Table 3 and 4) 
 
Cell model: immune-competent cells 
Nanoparticle: 4 different types of coated and uncoated ZnO nanoparticles 
Pathways changed: apoptosis, signalling pathways (insulin, NKF) (Annex Table 5) 
 

PATHWAY ANALYSIS OF FULLERENOL EFFECTS IN HUMAN VASCULAR ENDOTHELIAL CELLS 
(FROM PAPER IN PREPARATION) 
 
The water soluble derivative of the ball-shaped C60 fullerene nanoparticle, fullerenol (C60(OH)24) has been 
proposed for use in future clinical treatments because of its advantageous properties. Obviously, before 
it is actually put on the market, it is important to assess and understand its possible toxic effects. Upon 
intravenous injection of fullerenol, the particles will encounter vascular endothelial cells, which provide a 
barrier between the blood and tissues all across the cardiovascular system. Endothelial cells play a crucial 
role in maintaining blood vessel homeostasis and are essential in preventing atherosclerosis. Here, we 
aim to unravel the toxicological effects of fullerenol on human umbilical vein endothelial cells (HUVECs) 
and to investigate underlying biological mechanisms. 
Methods: In our analysis we combined previously published microarray data from a study by Yamawaki 
et al. (2006), obtained from ArrayExpress under the accession number E-GEOD-3364 with pathway and 
transcription factor data. In the original experiment, HUVECs were stimulated with 100 μg/ml C60(OH)24. 
PathVisio and pathways from WikiPathways were used to perform pathway analysis.  
Results: We show that in response to treatment with fullerenol, the gene expression profile of vascular 
endothelial cells is altered with increases in expression of genes relevant for intracellular production, 
collection and preservation of cholesterol. This response involves the activation of the SREBF1 and SREBF2 
transcription factors, which are known to regulate intracellular lipid concentrations, including those of 
sterols such as cholesterol. 
Conclusions: If our findings with respect to cholesterol synthesis also occur at concentrations occurring in 
vivo after fullerenol application, disruption of this process might worsen atherosclerotic onset. Because 
of this potential effect on cholesterol metabolism, clinical use introducing fullerenols into the vascular 
system of humans prone to developing atherosclerosis would require evaluation of cholesterol levels as 
part of targeted toxicological studies. 
 
Cell model: human umbilical vein endothelial cells (HUVECs)  
Nanoparticle: fullerenol (C60(OH)24) 
Pathways changed: intracellular production, collection and preservation of cholesterol (Annex Table 6) 
 

PATHWAY ANALYSIS OF NANOSTRUCTURED SILICA EFFECTS ON RAT LIVER AND JEJUNUM 
(SUBCHRONIC TOXICITY STUDY) 
Transcriptomics data from a published paper by van der Zande et al. (2014) “Sub-chronic toxicity study in 
rats orally exposed to nanostructured silica” was reanalysed for the purpose of obtaining knowledge on 
the mode of action of nanostructured silicas. The below information is partly retrieved from the abstract 
of the paper from van der Zande et al.:    
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BACKGROUND: 
Synthetic Amorphous Silica (SAS) is commonly used in food products and drugs. Part of the consumer 
intake of silica is in the nano-size range (i.e. 5-200 nm) which can be up to 43% of the total silica content. 
Concerns have been raised about the possible adverse effects of chronic exposure to nanostructured 
silica. 
METHODS: 
Rats were orally exposed to 100 (low), 1000 (medium) or 2500 (high) mg/kg bw/day of SAS, or to 100 
(low), 500 (medium) or 1000 (high) mg/kg bw/day of NM-202 (a representative nanostructured silica for 
OECD testing from JRC) for 28 days, or to the highest dose of SAS or NM-202 for 84 days. RNA was 
retrieved from the liver after 28 days and 84 days of exposure to both materials. From the latter period 
also RNA was retrieved from the jejunum of the exposed rats. Differentially expressed gene levels were 
then evaluated including overrepresentation analysis of biological pathways. The pathway over-
representation analysis was performed in PathVisio using the WikiPathways repository.  
RESULTS: 
Extensively characterization of both SAS and NM-202 as pristine materials, but also in the feed matrix and 
gut content of the animals, and after in vitro digestion, was performed and is available in the paper from 
van der Zande et al. From this paper they concluded that exposure to SAS or NM-202 did not result in 
clearly elevated tissue silica levels after 28-days of exposure. However, after 84-days of exposure to SAS, 
but not to NM-202, silica accumulated in the spleen. Biochemical and immunological markers in blood 
and isolated cells did not indicate toxicity, but histopathological analysis, showed an increased incidence 
of liver fibrosis after 84-days of exposure, which only reached significance in the NM-202 treated animals. 
This observation was accompanied by a moderate, but significant increase in the expression of fibrosis-
related genes in liver samples. With the additional overrepresentation analysis also other biological 
processes and pathways were found to be affected. Also comparisons were made between the different 
doses and exposure periods of SAS and NM-202.  
 
Type of study: in vivo 
Animal model: rat 
Type of tissue: liver and jejunum 
Nanoparticles analysed: Synthetic Amorphous Silica (SAS) and NM-202 (a representatively 
nanostructured silica for OECD testing from JRC) 
Pathways: hardly any change at low doses, some changes in biotransformation, statin pathway and 
calcium regulation (of cardiac cells) for medium and high doses (see Annex Tables 8-17 for individual 
doses and exposure periods) 
 
 

PATHWAY ANALYSIS OF EFFECTS OF SILVER IONS AND SILVER PARTICLES ON RAT LIVER AND 
PBMCS (SUB-CHRONIC TOXICITY STUDY) 
 
Transcriptomics data from a study conducted by van der Zande et al., described in the publication from 
2012 “Distribution, elimination, and toxicity of silver nanoparticles and silver ions in rats after 28-day oral 
exposure., was analyzed for the purpose of a better understanding of the effect of silver ions and particles 
on the rat liver. Parts of the information below are from the paper of Van der Zande et al.: 
 
BACKGROUND: Silver ENMs are mainly used for their bactericidal effects and are therefore widely used 
worldwide in a number of consumer products. Also within the food and feed area the use of silver 
nanoparticles is growing. The antibacterial effects of silver particles are suggested within literature to be 
caused by the interaction with bacterial membranes. These effects are expected to become larger with 
decreasing particle size. These properties however also make them potentially harmful to humans. Silver 
ions are biologically more active than the nanoparticles themselves.  
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METHODS: Rats were orally exposed for 28 days AgNP <to 20 nm non-coated (NM300K = JRC reference 
material), or <15 nm PVP-coated silver nanoparticles ([Ag] = 90 mg/kg body weight (bw)), or AgNO(3) ([Ag] 
= 9 mg/kg bw), or carrier solution only. At day 29 rats were sacrificed, and RNA was extracted from liver 
and PBMCs. In addition full characterisation of the nanoparticles has been done using TEM and DLS to 
verify the size distribution of the manufacturer. Also distribution, elimination and toxicity were 
monitored.  
RESULTS: The results from the van der Zande et al. paper are: Silver was present in all examined organs 
with the highest levels in the liver and spleen for all silver treatments. Silver concentrations in the organs 
were highly correlated to the amount of Ag(+) in the silver nanoparticle suspension, indicating that mainly 
Ag(+), and to a much lesser extent silver nanoparticles, passed the intestines in the silver nanoparticle 
exposed rats. In all groups silver was cleared from most organs after 8 weeks post-dosing, but remarkably 
not from the brain and testis. Using single particle inductively coupled plasma mass spectrometry, silver 
nanoparticles were detected in silver nanoparticle exposed rats, but, remarkably also in AgNO(3) exposed 
rats, hereby demonstrating the formation of nanoparticles from Ag(+)in vivo that are probably composed 
of silver salts. Biochemical markers and antibody levels in blood, lymphocyte proliferation and cytokine 
release, and NK-cell activity did not reveal hepatotoxicity or immunotoxicity of the silver exposure. In 
conclusion, oral exposure to silver nanoparticles appears to be very similar to exposure to silver salts. 
However, the consequences of in vivo formation of silver nanoparticles, and of the long retention of silver 
in brain and testis should be considered in a risk assessment of silver nanoparticles. With the additional 
overrepresentation analysis of the transcriptomics data after 28 days of exposure in liver and PBMCs also 
other biological processes and pathways were found to be affected. Also comparisons were made 
between the different doses and exposure periods of AgNO3, PVP and NM300K. 
 
Type of study: in vivo 
Animal model: rat 
Type of tissue: liver and PBMCs 
Nanoparticles analysed: non-coated AgNP <20 nm (NM300K - JRC reference materials), PVP-coated 
AgNP <15 nm and AgNO3 (silver ions).  
Pathways: Biotransformation, electron chain, translation factors, apoptosis, cell cycle, calcium 
regulation and toll-like receptor signaling (Annex Tables 18 - 23 for individual tissue, nanoparticle and 
exposure) 
 

CASE STUDY USING THE CHIPSTER-BASED BIOINFORMATICS WORKFLOW ON 
TRANSCRIPTOMICS DATA FROM HUMAN SMALL AIRWAY EPITHELIAL CELLS (SAE) EXPOSED TO 
TITANIUM DIOXIDE NANOBELTS AND MULTI-WALLED CARBON NANOTUBES 
 
Part of a transcriptomics data set published by Tilton et al (2014) was used to study the effects of titanium 
dioxide nanobelts (TiO2  NB) and multi-walled carbon nanotubes (MWCNT) on human small airway 
epithelial cells (SAE). Details on the characterization of the nanomaterials can be found in the original 
study and the raw data is available in the Gene Expression Omnibus (GEO) database (GSE42067). The cells 
were exposed to 10 and 100 μg/ml of the nanomaterials for 1 and 24 hours with 3 replicates for each 
condition. RNA samples were hybridized to Affymetrix HT HG-U133a 2.0 (=hgu133av2 in Chipster) 
microarrays. The .CEL files for the 30 samples (24 treated + 6 controls) were brought into Chipster for 
analysis according to the tutorial. The data was normalized, filtered and analyzed by various methods, 
including i) clustering by hierarchical and principle component analysis (PCA) methods, ii) statistical 
analysis to identify differentially expressed genes, iii) gene ontology (GO) enrichment analysis and iv) 
various gene network and pathway-based analyses using freely available online tools, including 
ConsensusPathDB, PathVisio and WikiPathways. 
The results indicated overall that the two nanomaterials elicit similar effects at the early time point (1h), 
which later diverge into more nanomaterial-specific effects at 24h. The effect of TiO2   NBs was stronger 
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at 24h than that of MWCNTs. Dose-response effects could be seen for both nanomaterials at 1h and the 
effect was retained for TiO2 NB, but not for MWCNTs, indicating a potential agglomerating effect leaving 
less free fibers available for the cells to interact with over time or alternatively an adaptive response over 
time by the cells exposed to MWCNTs (Figure 1). The low dose was further analyzed for GO enrichment 
at both time points and indicated changes in RNA metabolic processes at 1h and MAPK cascades at 24h 
for MWCNTs, while TiO2 NBs induced changes in primary metabolic processes at 1h and immune response 
at 24h. Finally, the effects of TiO2 NB were visualized in the WikiPathways “Nanoparticle mediated 
activation of receptor signaling” using PathVisio (Figure 2). 
These conclusions largely align with the findings in the original study, confirming the use of this 
standardized workflow (as presented in the tutorial “How to use Chipster for Bioinformatics Analysis of 
Nanomaterial-based Omics Data”) as capable of reproducing analyses done by other groups using other 
methods. 
 

Figure 5. PCA plots based on dose-response effects (i.e. statistically differentially expressed genes 
showing dose-response effects) in human small alveolar epithelial cells following 1h and 24h exposures 

to titanium dioxide nanobelts (TiO2 NBs) and multi-walled carbon nanotubes (MWCNT). 
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Figure 6. Effects of titanium dioxide nanobelts (TiO2 NBs) in human small alveolar epithelial cells 

visualized in the WikiPathways “Nanoparticle mediated activation of receptor signaling”. 
 

DISCUSSION 
The affected pathways, identified using the standardized workflows in the ArrayAnalysis.org and 
PathVisio-based tutorials, varied largely between case studies (Table 3), which was expected since: 1. 
different biological systems (lung epithelial cells, PBMCs, liver tissue) react differently to nanoparticles 
and to stress in general.  Inflammation, immune response and signaling pathways are observed in multiple 
experiments while other pathways seem to be more cell type or nanoparticle specific. HUVECs are found 
to upregulate cholesterol pathways if confronted with fullerenols while Caco-2 cells increase their metal 
homeostasis pathways to deal with Ag nanoparticles. 2. The experimental setup, namely amount, 
exposure and type of ENM is also known to result in different outcomes. While Caco-2 cells respond 
strongly to high doses of Ag nanoparticles (25 mg/ml) there are no significantly changed pathways found 
for low dose of Ag nanoparticles (2.5 mg/ml) or equivalent amounts of Ag ion solution. 
The results based on the case study using the Chipster-based tutorial were comparable to the results 
obtained in the original study, confirming its usefulness to perform large cohesive bioinformatics studies 
across several data sets. 
 
Due to the variety of experimental approaches it is difficult to compare them directly. To make broader 
conclusions and predictions larger cohesive data sets are needed and they need to be analyzed in a 
cohesive manner. Nevertheless, these case studies show that the bioinformatics workflows may serve as 
a basis - a training set - for modelling. The strength of this approach is the standardized workflow to 
analyze (or reanalyze) the existing data to provide information for follow-up studies and safety 
recommendations. Using open-source, freely available, curated and documented web-tools (with help of 
our tutorials) coordinated cohesive bioinformatics analyses are possible and researchers from different 
fields are able to give input for the pathway analysis database. This meets exactly the eNanoMapper 
mission of standardization and harmonization.  
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Table 3: Summary of affected pathways, identified using the standardized workflows in the 

ArrayAnalysis.org and PathVisio-based tutorials, for different nanoparticles and in vitro/in vivo systems. 

Cell type Exposure Nanoparticle Pathways (main changed 
pathways) 

In vitro studies 

human intestine 
cell line (Caco-2) 
(differentiated) 

25 mg/mL silver 
nanoparticles in 
serum-free cell 
culture medium for 
24 h 

AgPURE 10% (w/w) silver 
stabilized with 4% (w/w) 
polyoxyethylene glycerol 
trioleate and 4% (w/w) 
polyoxyethylene (20) sorbitan 
monolaurate (Tween 20). 
15 nm  

Oxidative stress, 
inflammation, metal 
homeostasis (Table 2) 

human bronchial 
epithelial cell 
line (BEAS-2B) 

0.25 and 2 mg/cm2 
MWCNT for 1, 4, 6, 
12, 24 and 48 h 

MWCNT, 74 nm x 5.4 µm Neurological processes, 
inflammation inhibition, 
response to reactive 
oxygen species (Annex 
Table 1) 

human aortic 
endothelial cells 

growing on 
nanostructured 
surface for 24 h 

TiO2 30 nm and 100 nm 
nanotube arrays (surface 
structure!) 

Anti-inflammatory and pro-
proliferative pathways 
(Annex Table 2) 

human hepatic 
stellate cells  

30 μg/mL ZnO 
nanoparticles in 
cell culture 
medium for 24 h 

Z‑ COTE, Nanosun P99/30 
(both uncoated ZnO), and Z-
COTE HP1 (coated with 
triethoxycaprylylsilane and Z-
COTE MAX coated with a 
dimethoxydiphenylsilane / 
triethoxycaprylylsilane 
crosspolymer 
25 - 44 nm 

immune response, 
metallothionins (Annex 
Table 3 and 4) 

human T-
lymphocyte cell 
line (Jurkat) 

10 µg/ml in cell 
culture medium for 
6 or 24 h 

ZnO-1 (uncoated ZnO 
nanoparticles), 14.7 nm 

Apoptosis, signalling 
pathways (insulin, NKF) 
(Annex Table 5) 

human umbilical 
vein endothelial 
cells (HUVECs)  

100 µg/ml in cell 
culture medium for 
24 h 

fullerenol (C60(OH)24), 7.1 nm 
diameter 

intracellular production, 
collection and preservation 
of cholesterol (Annex Table 
6) 

In vivo studies (rat) 

liver tissue oral exposure of 
rats to 100, 1000 or 
2500 mg/kg 

SiO2  Synthetic Amorphous 
Silica (SAS, 7 nm)  or NM-202 
(10 - 25 nm) 

hardly any change with low 
dose, some changes in 
biotransformation and 
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bw/day of SAS, or 
to 100, 500 or 1000 
mg/kg bw/ 
day of NM-202 for 
28 days 

statin pathway with high 
and medium dose 
(Annex Tables 8 - 17) 

gut (jejenum) 
tissue 

oral exposure of 
rats to 100, 1000 or 
2500 mg/kg 
bw/day of SAS, or 
to 100, 500 or 1000 
mg/kg bw/ 
day of NM-202 for 
28 days 

SiO2  Synthetic Amorphous 
Silica (SAS, 7 nm)  or NM-202 
(10 - 25 nm) 

hardly any change with low 
dose, calcium regulation 
was affected by high dose 
of NM-202 (Annex Tables 8 
- 17) 

liver  tissue oral exposure of 
rats to 90 mg/kg 
body weight for 28 
days 

non-coated Ag NP <20 nm 
(NM300K - JRC reference 
materials), PVP-coated AgNP 
<15 nm and AgNO3 (silver 
ions). 

Biotransformation and 
apoptosis (NM300K), Cell 
cycle, calcium regulation 
and toll-like receptor 
signaling (PVP-coated 
AgNP) (Annex Tables 18 - 
23) 

PBMCs  oral exposure of 
rats to 90 mg/kg 
body weight for 28 
days 

non-coated Ag NP <20 nm 
(NM300K - JRC reference 
materials), PVP-coated AgNP 
<15 nm and AgNO3 (silver 
ions). 

Biotransformation and 
electron chain (NM300K), 
translation factors (PVP-
coated) 
(Annex Tables 18 - 23) 

 
 

3.3. PATHWAY DESCRIPTORS: OMICS DATA INTEGRATION 
We have considered advanced clustering algorithms and their application on binary Gene Ontology (GO) 
matrices, derived by integrative meta-analysis of omics data, aiming to predict the cell association of 
ENMs and partition them into groups based on their protein corona fingerprint (bio-signature) similarity. 
As already introduced in D4.2 section 5, we have created a workflow where estimated groups of omics 
data are summarized to produce readily biology interpreted descriptors. Results are presented for the 
protein corona fingerprint (PCF) data as it appeared in Walkey et al. (2014) and by employing clustering 
methods to the relevant GO membership matrix. The suggested method is potentially also applicable to 
transcriptomics data for investigation of mechanistic associations with toxicity endpoints.  The main steps 
of the workflow are the following: 

1. Extract Uniprot ids from PCF data and translate them to Entrez Gene ids, also subtracting 
duplicates or null values. 

2. Perform Gene Set Enrichment Analysis (GSEA) as introduced by Subramanian et al. (2005) and 
implemented in R GOstats package, to estimate the statistically significant GO terms 
(hypergeometric p-value≤0.05). 

3. Cluster the binary membership matrix showing memberships of proteins to GO ids, by 
employing either bi-clustering (R iBBiG package) or hierarchical clustering (R vegan package). 
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4. Use the above clusters to summarize proteins and build the new set of descriptors, called GO 
descriptors. For example, Descriptor 1 is an average of the relative abundances of the proteins 
found to cluster together in cluster 1 estimated in step 3.    

Additionally, a stochastic search Simulated Annealing (SA) algorithm was built to estimate the optimal set 
of GO descriptors or equivalently the optimal partition of the binary membership GO matrix in terms of 
maximizing the coefficient of determination R2 accuracy of a 10-fold cross-validation (CV) performance 
scheme for neural network model in the test set. This is an important addition since a unique data set is 
returned which is in fact the best performing data set given. The steps followed for this simulated 
annealing search are the following: 

1. Set minimum and maximum thresholds for the number of clusters (each cluster should contain 
at least five proteins). We have also set a threshold to the maximum number of clusters equal to 
1/10 of the genes included in the data.  

2. Suggest a new data partition by either merging two randomly selected clusters with probability 
1/3, or split them into three clusters with probability 2/3. In the latter case the split is 
performed by either bi-clustering or hierarchical clustering. 

The new workflow was tested with the original PCF data sets as they are described in section 5.3 of D4.2 
and introduced in [Walkey 2014], namely the 129x84 gold PCF data set and the filtered 76x84 gold PCF 
data set. Moreover we have considered the data sets presented in a follow-up publication by Liu et al. 
(2015), who suggested a 11x84 PCF dataset when considering a linear regression model and a 9x84 PCF 
data set when applying a non-linear support vector regression model. The above data sets are denoted 
by PCF129, PCF76, PCF11, and PCF9, respectively. Throughout this analysis we have considered the GO 
Molecular Functions (MF) ontology as being most relevant to PCF data. The subgroup Cellular 
Compartment (CC) was in this case deemed less relevant, since the corona is formed by proteins in serum, 
which are mainly extracellular. Similarly, the GO subgroup Biological Process (BP) was also considered less 
relevant, since the interpretation of enriched biological processes among these proteins becomes more 
difficult. The proteins in a corona are not actively involved in processes, but rather affect the uptake of 
the NP. 

As seen in the Table 4, GO descriptors are performing well in terms of predicting the cellular association 
of proteomics data, which emphasizes the flexibility of the model being able to retain the whole data set 
and also perform well in QSAR modelling due to the small number of descriptors considered. Particularly 
the set of 6 descriptors derived by hierarchical clustering, denoted by GOdescrH6, is the best set in terms 
of both 10-fold and 4-fold CV. The performance accuracy in the test set for PCF9 and the GOdescrB4 
dataset (4 GO descriptors derived by our biclustering method) are comparable, where PCF9 is the best 
performing set amongst the PCF datasets. More results and biological interpretation of the findings are 
reported in Tsiliki et al. (2016). In a sense our methodology is folding the PCF data set to be included in 
QSARs and unfolding for biological interpretations of the findings, which also offers a readily available 
interpretation since each GO descriptor is being ‘formed’ by a set of GO terms. Biological interpretation 
of the GO descriptors indicated that many of the descriptors shared several GO ids (albeit based on 
different proteins), but also contained specific unique GO ids, such as phosphatidylcholine binding, 
scavenger receptor activity and phospholipid binding. Interestingly, “calcium ion binding” was shared 
among all GO descriptors and strongly linked to the most influential descriptor, GOdescr4, which had the 
highest weight of importance in the model (100%, as compared to 0 for the least important GO 
descriptor). Calcium signaling as well as the calcium binding acute phase C-reactive protein (CRP), which 
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contributed to the importance of GOdescr4, have been shown to be strongly linked to opsonization and 
thereby phagocytosis, i.e. cell association [Nunes 2010, Bodman-Smith 2002]. 

In conclusion, generation of biological descriptors as the ones described above allow for more 
mechanism-based (quantitative) structure activity-relationships ([Q]SARs), provide a framework to 
include omics data into QSAR modelling, and a method for grouping ENMs according to their mechanistic 
characteristics. 

Table 4: R2 CV values for gold protein corona fingerprint data sets and GO descriptors, for the PCF data. 
Next to the name of the data sets is the number of descriptors they consist of. The best performing 

model is reported for the GOdescrH6 data set. 

Dataset R2
10CV R2

10CVtest R2
4CV R2

4CVtest 

PCF129 0.6526 0.7132 0.5985 0.7186 

PCF76 0.7553 0.6277 0.7209 0.7001 

PCF11 0.8664 0.7634 0.8550 0.7634 

PCF9 0.7903 0.8644 0.7681 0.8022 

GOdescrH6 0.6995 0.8969 0.6947 0.8731 

GOdescrB4 0.6188 0.8511 0.5975 0.8656 

 

3.4. DISSEMINATION AND TEACHING 

DISSEMINATION 

CONFERENCE 

1. UM (Lars, Egon) participated in the NanoSysBio symposium organized by NanoSolutions in 
Stockholm, Nov 2015 and presented eNanoMapper as tool to support systems biology. 

 

POSTERS 

2. Penny Nymark, Linda Rieswijk, Friederike Ehrhart, Nina Jeliazkova, Georgia Tsiliki, Vesa Hongisto, 
Pekka Kohonen, Haralambos Sarimveis, Chris Evelo, Roland Grafström, Egon Willighagen. 
Applying “Big Data” for handling nanomaterials read across and adverse outcome studies. 2nd 
Nanosafety Forum for Young Scientists, Visby, Gotland, Sweden, 2016. Oral presentation. 

3. Dimitra-Danae Varsou, Georgia Tsiliki, George Drakakis, Penny Nymark, Pekka Kohonen, 
Charalampos Chomenidis, Philip Doganis, Roland Grafström, Haralambos Sarimveis. Exploring 
correlations patterns on toxicity omics data. 2nd Nanosafety Forum for Young Scientists, Visby, 
Gotland, Sweden, 2016. Poster Presentation. 
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4. Pekka Kohonen, Penny Nymark, Vesa Hongisto and Roland Grafström. Predictive Toxicogenomics 
Space (PTGS) – an omics-based tool for predictive toxicity testing. 2nd Nanosafety Forum for 
Young Scientists, Visby, Gotland, Sweden, 2016. 

5. Vesa Hongisto, Penny Nymark, Johannes Hattara, Pekka Kohonen and Roland Grafström.  Multi-
readout in vitro high-throughput screening analyses serve efficiently for evaluation and ranking 
of nanomaterial toxicity under diverse testing protocols. 2nd Nanosafety Forum for Young 
Scientists, Visby, Gotland, Sweden, 2016. 

PORTAL:NANOMATERIALS ON WIKIPATHWAYS 
 
As mentioned above, a Portal about nanomaterial related pathways was installed at WikiPathways. This 
portal offers direct link to all nanomaterial related pathways on WikiPathways. 
 

PUBLICATIONS 
 

1. Georgia Tsiliki, Penny Nymark, Pekka Kohonen, Roland Grafström and Haralambos Sarimveis. 
Enriching nanomaterials omics data: an integration technique to generate biological descriptors. 
Submitted to Nat Nanotechnology. 

2. Penny Nymark, Linda Rieswijk, Friederike Ehrhart, Nina Jeliazkova, Georgia Tsiliki, Vesa Hongisto, 
Pekka Kohonen, Haralambos Sarimveis, Chris Evelo, Roland Grafström, Egon Willighagen. “Big 
data”-driven nanosafety: pathways for read across and adverse outcome studies. In preparation 

3. Bart Smeets, Lars MT Eijssen, Friederike Ehrhart, Chris T Evelo, Egon L Willighagen. Fullerenol 
affect cholesterol metabolism in human vascular endothelial cells at a transcriptional level. In 
preparation 

TRAINING 

TUTORIALS 
For this deliverable in total six tutorials were developed: 
 

1. How to use PathVisio to make a pathway which can be uploaded to Wikipathways database: how-
make-a-pathway  

2. How to use AffyQC to do quality control and pre-processing with raw transcriptomics data: 
tutorial affyqc-web-tool  

3. How to use the statistics tool of ArrayAnalysis.org to calculate fold change, logFC, average 
expression and significance of change of pre-processed data (from AffyQC) tutorial statistics-
analysis  

4. How to do pathway analysis using the pathway analysis tool of ArrayAnalysis.org tutorial pathway-
analysis  

5. How to use Chipster to perform data quality control, pre-processing and analysis of 
transcriptomics data tutorial chipster 
 
Processing of large and diverse sets of information and metadata towards mechanism-based 
QSAR modelling is in also being developed. Import of physico-chemical and endpoint toxicity data 
into Chipster has been developed to enable integration with omics data. A further extension of 
the Chipster tutorial is being planned. Those tutorials are available on the eNanoMapper website 
in the tutorial registry http://www.enanomapper.net/enm-tutorials.  
 

http://www.wikipathways.org/index.php/Portal:Nanomaterials
http://www.enanomapper.net/library/how-make-pathway
http://www.enanomapper.net/library/how-make-pathway
http://www.enanomapper.net/library/affyqc-web-tool
http://www.enanomapper.net/library/statistics-analysis
http://www.enanomapper.net/library/statistics-analysis
http://www.enanomapper.net/library/pathway-analysis
http://www.enanomapper.net/library/pathway-analysis
http://www.enanomapper.net/library/chipster-tool-analysis
http://www.enanomapper.net/enm-tutorials
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6. How to calculate omics descriptors tutorial GO descriptors   
 

SAFERNANODESIGN SUMMER SCHOOL (ESI, ARCHAMPS) 
 
SaferNanoDesign is a one-week intensive course about aspects of nanosafety and safe design of 
nanomaterials for all states of life cycle.  
UM contributed a lecture and a practical about using biological and nanoparticle databases and analysis 
of transcriptomics data using pathway analysis with the following content: 
 
1. Databases 

The main goal is to gain understanding on the content of online biological databases, like NCBI and 
Ensembl and nanomaterial specific databases like nanowerk and eNanoMapper. Skills will be developed 
to search, interpret and integrate the information available in online databases. Ultimately, this will help 
to better understand the function and structure of a gene and/or protein in its role in a biological process 
or a disease and help to get information about nanomaterials. 
In molecular biology, DNA, RNA and protein are the three biomolecules that are the most important 
information carriers. The information they are carrying can be transferred from DNA to RNA 
(transcription) and from RNA to proteins (translation). Transcription occurs in the nucleus where the gene 
is transcribed into a messenger RNA (mRNA). Thereafter, the mRNA moves from the nucleus into the 
cytoplasm where the translation of the mRNA into the protein occurs. 
Databases contain valuable information on the biomolecules described above and they are constantly 
adapted based on new insights. To use the database content properly it is important to know 1) which 
databases are available and 2) how to find and interpret the content. 
Databases: 
Ensembl http://www.ensembl.org 
NCBI http://www.ncbi.nlm.nih.gov/ 
Gene Ontology http://geneontology.org/  
eNanoMapper http://data.enanomapper.net  
 
2. Pathway analysis 

The main goal of the pathway analysis part of this course is to understand what biological pathways are 
and how they can be used in biomedical research to analyze and visualize experimental data. 
Pathways are intuitive visual representations of biological processes usually consisting of a series of 
actions among molecules that lead to a certain product or change in a cell. Cells are constantly receiving 
cues from both inside and outside the body, which are prompted by things like injury, infection, stress or 
food. To react and adjust to these cues, cells send and receive signals through biological pathways. The 
molecules that make up biological pathways (genes, proteins and metabolites) interact with signals, as 
well as with each other, to carry out their designated tasks. The most common pathways are metabolic, 
gene regulation and signaling pathways. Researchers have discovered many important biological 
pathways through laboratory studies, however many pathways remain to be found. It will take years of 
research to identify and understand the complex connected among all of the molecules in all biological 
pathways, as well as to understand how these pathways work together. 
There are several different online resources to find biological pathways. One commonly used, community 
curated pathway database is WikiPathways (http://www.wikipathways.org).  
Advances in measuring technologies (high-throughput sequencing, gene/protein profiling techniques) 
enable a comprehensive monitoring of a biological system. Independent from the technology used, 
analysis of high-throughput data typically yields a list of differentially expressed genes. This list is 
extremely useful in identifying genes that may have roles in a given experiment, but it also often fails to 
provide mechanistic insights into the underlying biology. Pathway analysis provides three main features: 

https://drive.google.com/drive/folders/0B9tVrnVNjIP_fm1IUG9pa1VwaFVFUTcxa1R0WTZ0RXV2V3F4VGVqWVlFS1BFakdiZmtCZWs
http://www.esi-archamps.eu/Thematic-Schools/BioHC/SaferNanoDesign
http://www.ensembl.org/
http://www.ensembl.org/
http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/
http://geneontology.org/
http://data.enanomapper.net/
http://www.wikipathways.org/
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1. It simplifies the analysis by grouping long lists of individual genes into smaller sets of related genes 
or proteins. Instead of investigating thousands of genes, the complexity is reduced to just several 
hundred pathways. 

2. Additionally, the approach puts the data into a clear biological context and identifying active 
pathways that differ between two conditions can have more explanatory power than a simple list 
of different genes or proteins. 

3. Lastly, pathway analysis tools often allow the visualization of the experimental data on the 
pathway diagrams which provide an intuitive, visual representation of the changes in the selected 
process. 

 
3. Software 
PathVisio http://www.pathvisio.org 
  

http://www.pathvisio.org/
http://www.pathvisio.org/
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4. CONCLUSION 
 
In this deliverable we described the work performed in the eNanoMapper project related to: 

 creating pathways to serve as repository for quantitative (statistics) and qualitative (visualization) 
pathway analysis. These pathways are publicly available at WikiPathways (Portal:Nanomaterials) 
and most of them already belong to the curated/featured edition of WikiPathways.  

 establishing workflows on how to do transcriptomics data analysis of cells and tissue exposed to 
a variety of different nanomaterials and exposure scenarios. 

 drawing first conclusions on which general and specific biological pathways are affected by certain 
ENMs and exposure scenarios. 

 adding this pathway analysis data to the eNanoMapper database. 

 demonstrating the use of pathway enrichment analysis to toxicity omics data by grouping ENM 
data and interpreting the biological findings 

 emphasizing the need of omics data in the nanosafety field to facilitate grouping of ENMs and the 
development of novel descriptors for QSAR modelling 

 Preparing tutorials and teaching sessions to educate the community on how to use the above 
tools. 

 
As mentioned before, due to the high variability of nanomaterials, biological systems and exposure 
scenarios the amount of data is currently not enough to make more than preliminary statements about 
which biological pathways are affected by a certain class of nanoparticles. But we showed that this 
approach is functional and will be extended with more data in the future.  
  

http://www.wikipathways.org/index.php/Portal:Nanomaterials
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6. ANNEXES 
6.1. GRADUATION THESIS 
 

 The effect of Multi-walled carbon nanotubes on gene expression in bronchial epithelial BEAS 2B 
cells. Marloes Poort, FHML, Maastricht University (August 2015) – Supervisor: Dr L Eijssen, 
B Smeets, Dr E Willighagen 

 The effect of different sized TiO2  nanotubes on the gene expression in human aortic endothelial 
cells. Stan van Roij, FHML, Maastricht University (August 2015) – Supervisor: Dr L Eijssen, 
B Smeets, Dr E Willighagen 

 The effect of zinc oxide on gene expression in human hepatic stellate cells and immune-
competent cells. Tessa Lebbink, FHML, Maastricht University (August 2015) – Supervisor: 
Dr. S Coort, B Smeets  

 Exploration of biological information related to toxicity: application to nanoparticle proteomics 
data (in Greek - includes English summary). Alexandra Roussi, School of Chemical Engineering, 
NTUA (September 2015) - Supervisor: Prof H Sarimveis 

 Bioinformatics analysis of toxicity omics data. Dimitra-Danae Varsou, School of Chemical 
Engineering, NTUA (To be submitted in September 2016) - Supervisor: Prof H Sarimveis 

 

6.2. PATHWAY ANALYSIS RESULTS  
 
Annex Table 1: Summary of changed pathways for MWCNT treated BEAS 2B cells (cut-off LogFC [0.25]) 

Pathway Z-score 

Biogemic Amine Synthesis 3.14 

Globo Sphingolipid Metabolism 2.8 

Trans Sulfuration Pathway 2.7 

TarBase Pathway 2.57 

Dopamine Metabolism 2.5 

Matrix Metalloproteinases 2.5 

Fluoropyrimidine Activity 2.33 

Selenium Metabolism and Selenoproteins 2.31 

Arylamine metabolism 2.3 

Neurotransmitter Clearance in the Synaptic Cleft 2.3 

Urea Cycle and metabolism of Amino Groups 2.08 

IL-17 Signaling Pathway 2.02 

http://dspace.lib.ntua.gr/handle/123456789/41719
http://dspace.lib.ntua.gr/handle/123456789/41719
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Vitamin B12 Metabolism 2.02 

Neural Crest Differentiation 1.99 

 

Annex Table 2: Summary of changed pathways for TiO2 nanotube treated human aortic endothelial 
cells (cut-off LogFC [0.58]) 

Pathway z-score 

Diclofenac Metabolic Pathway 4.43 

Toll-like receptor signaling pathway 4.16 

IL1 and megakaryocytes in obesity 4.14 

Eicosanoid synthesis 3.47 

Regulation of toll-like receptor signaling pathway 3.14 

Nicotine metabolism 2.98 

TGF Beta Signaling Pathway 2.93 

Differentiation Pathway 2.71 

Nuclear Receptors 2.71 

miR-targeted genes in adipocytes - TarBase 2.46 

Blood Clotting Cascade 2.43 

Glucuronidation 2.43 

 
 
 
 
Annex Table 3: Pathways affected in hHSC cells by the coated ZnO NP (HP1 and MAX) measured after 
24 hours. (cut-off LogFC [1]) 

HP1 

Pathway z-score 

Trans-sulfuration and one carbon metabolism 6.29 

Eicosanoid Synthesis 6.28 

Selenium Micronutrient Network 6.00 
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Folate Metabolism 5.07 

Vitamin B12 Metabolism 4.65 

MAX 

Trans-sulfuration and one carbon metabolism 6.84 

Eicosanoid Synthesis 6.81 

Selenium Micronutrient Network 5.64 

Cytokines and Inflammatory Response 5.47 

Prostaglandin Synthesis and Regulation 4.89 

 
Annex Table 4: Pathways affected in hHSC cells by Nanosun and Z-COTE measured after 24 hours. (cut-
off LogFC [1]) 

Nanosun 

Pathway z-score 

miR-targeted genes in lymphocytes - TarBase 5.22 

miR-targeted genes in muscle cell - TarBase 5.15 

miR-targeted genes in epithelium - TarBase 4.77 

miR-targeted genes in squamous cell - TarBase 4.45 

TSH signaling pathway 3.35 

Z-COTE 

miR-targeted genes in muscle cell - TarBase 4.33 

TSH signaling pathway 4.07 

miR-targeted genes in lymphocytes - TarBase 4.06 

miR-targeted genes in epithelium - TarBase 3.78 

RB in Cancer 3.64 

 
 
Annex Table 5: Pathways affected in Jurkat cells by ZnO-1 measured after 6 and 24 hours. The 
pathways were calculated with logFC ≥ 1 or logFC ≤ -1, number of affected genes ≥ 3, and P-value ≤ 
0.05.  

Pathway  
z-score 
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Jurkat ZnO1 (6h) 

Apoptosis Modulation and Signaling 5.48 

Oncostatin M Signaling Pathway 4.77 

Hypertrophy Model 4.77 

Quercetin and Nf-kB/ AP-1 Induced Cell Apoptosis 4.61 

Apoptosis 4.58 

Jurkat ZnO1 (24h) 

NRF2 pathway 4.88 

TGF Beta Signaling Pathway 3.87 

TSH signaling pathway 3.35 

Insulin Signaling 3.26 

MAPK Signaling Pathway 3.19 

 
 
Annex Table 6: Pathways affected in HUVECs cells by fullerenol. (cut-off FC [1.5]) 

Pathway z-score 

Cholesterol Biosynthesis 12.16 

SREBP signaling 8.38 

SREBF and miR33 in cholesterol and lipid homeostasis 5.51 

Statin Pathway 4.88 

GPCRs, Class C Metabotropic glutamate, pheromone 4.27 

Fatty Acid Biosynthesis 3.78 

Neurotransmitter Release Cycle 3.39 

Differentiation Pathway 3.08 

Dopamine metabolism 3.06 

Focal Adhesion 2.98 
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Annex Table 7: Summary of changed pathways for high dose Ag nanoparticle treated Caco-2 cells (cut 
off: logFC [1]) 

Pathway z-score 

Zinc homeostasis 6.1 

NRF2 pathway 4.63 

Quercetin and Nf-kB/ AP-1 Induced Cell Apoptosis 4.31 

Triacylglyceride Synthesis 3.77 

Farnesoid X Receptor  Pathway 3.59 

Oxidative Stress 3.52 

Fatty Acid Omega Oxidation 3.43 

Transcriptional activation by NRF2 3.43 

Copper homeostasis 3.1 

 
 

6.3. PATHWAY ANALYSIS RESULTS FROM DATA PROVIDED BY OTHER 
RESEARCH INSTITUTES 
Analysis of nanostructured silica effects on rat liver and jejunum (sub-chronic toxicity study) 
 
Data was provided by van der Zande, RIKILT, Wageningen University, Wageningen, the Netherlands 
 
Annex Table 8: Pathways affected by a low dose of SAS measured at day 29 in rat liver (cutoff, 
logFC>0.58 or logFC<-0.58 and p-val<0.05, >2 genes changed) 
 

Pathway positive 

(r) 

measur

ed (n) 

total % Z Score p-value 

(permute

d) 

Fatty Acid Biosynthesis 2 18 35 11,11% 4,88 0,000 

Beta Oxidation Meta Pathway 2 28 32 7,14% 3,75 0,017 

Fatty Acid Beta Oxidation 2 30 85 6,67% 3,59 0,013 

Type II interferon signaling (IFNG) 2 30 35 6,67% 3,59 0,015 

 
 
Annex Table 9: Pathways affected by a medium dose of SAS measured at day 29 in rat liver (cutoff, 
logFC>0.26 or logFC<-0.26 and p-val<0.05, >2 genes changed) 

Pathway positive measur total % Z Score p-value 



 

eNanoMapper 604134 11 November 
2016 

DELIVERABLE 
REPORT D4.4 

Page 36 of 43 

 

(r) ed (n) (permute

d) 

Statin Pathway 3 16 29 18,75% 5,13 0,000 

PKA-HCG-Glycogen Syntase 3 34 44 8,82% 3,11 0,017 

Cholesterol metabolism 2 20 40 10,00% 2,78 0,017 

Oxidative Stress 2 24 28 8,33% 2,43 0,046 

Cytokines and Inflammatory 

Response (BioCarta) 

2 25 28 8,00% 2,35 0,059 

Nuclear receptors in lipid 

metabolism and toxicity 

2 26 40 7,69% 2,28 0,030 

 
 
Annex Table 10: Pathways affected by a high dose of SAS measured at day 29 in rat liver (cutoff, 
logFC>0.26 or logFC<-0.26 and p-val<0.05, >2 genes changed) 

Pathway positive 

(r) 

measur

ed (n) 

total % Z Score p-value 

(permute

d) 

Metapathway biotransformation 3 128 144 2,34% 3,08 0,012 

Nuclear receptors in lipid 

metabolism and toxicity 

2 26 40 7,69% 5,29 0,000 

Retinol metabolism 2 33 49 6,06% 4,62 0,006 

 
 
Annex Table 11: Pathways affected by a high dose of SAS measured at day 85 in rat liver (cutoff, 
logFC>0.26 or logFC<-0.26 and p-val<0.05, >2 genes changed) 

Pathway positive 

(r) 

measured 

(n) 

total % Z 

Score 

p-value 

(permuted) 

p53 signal pathway 2 26 35 7,69% 4,62 0,010 

Retinol metabolism 2 33 49 6,06% 4,01 0,003 

p53 pathway 2 41 47 4,88% 3,50 0,015 

Proteasome Degradation 2 46 60 4,35% 3,25 0,021 

Cell cycle 2 71 89 2,82% 2,39 0,063 
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Annex Table 12: Pathways affected by a high dose of SAS measured at day 29 in rat jejunum (cutoff, 
logFC>0.26 or logFC<-0.26 and p-val<0.05, >2 genes changed) 

Pathway positive 

(r) 

measured 

(n) 

total % Z Score p-value 

(permuted) 

Oxidative Stress 5 24 28 20,83% 4,13 0,001 

DNA Replication 5 36 41 13,89% 2,96 0,002 

Translation Factors 5 36 48 13,89% 2,96 0,003 

TGF Beta Signaling Pathway 5 41 52 12,20% 2,61 0,011 

Endochondral Ossification 5 51 67 9,80% 2,05 0,043 

Type II interferon signaling (IFNG) 4 30 35 13,33% 2,54 0,017 

GPCRs, Class B Secretin-like 3 20 23 15,00% 2,45 0,028 

Ovarian Infertility Genes 3 23 31 13,04% 2,16 0,040 

Brain derived neurotrophic factor 2 10 11 20,00% 2,53 0,032 

Nucleotide GPCRs 2 10 14 20,00% 2,53 0,016 

GPCRs, Class C Metabotropic 

glutamate, pheromone 

2 12 15 16,67% 2,19 0,052 

Keap1-Nrf2 2 12 16 16,67% 2,19 0,041 

Homologous recombination 2 13 14 15,38% 2,04 0,043 

 
 
Annex Table 13: Pathways affected by a low dose of NM-202 measured at day 29 in rat liver (cutoff, 
logFC>0.26 or logFC<-0.26 and p-val<0.05, >2 genes changed)  

Pathway positive 

(r) 

measured 

(n) 

tota

l 

% Z Score p-value (permuted) 

G1 to S cell cycle control 6 59 67 10,17% 5,70 0,000 

Cell cycle 6 71 89 8,45% 5,04 0,000 

GPCRs, Class A 

Rhodopsin-like 

6 197 236 3,05% 1,97 0,030 

ATM Signaling Pathway 4 23 26 17,39% 6,47 0,000 

Fatty Acid Omega 3 10 13 30,00% 7,62 0,000 
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Oxidation 

Nucleotide GPCRs 2 10 14 20,00% 4,95 0,005 

Genetic alterations of 

lung cancer 

2 25 28 8,00% 2,78 0,038 

p53 signal pathway 2 26 35 7,69% 2,70 0,018 

Retinol metabolism 2 33 49 6,06% 2,25 0,035 

DNA Replication 2 36 41 5,56% 2,10 0,061 

Cytoplasmic Ribosomal 

Proteins 

2 38 89 5,26% 2,00 0,065 

 
 
Annex Table 14: Pathways affected by a medium dose of NM-202 measured at day 29 in rat liver  
(cutoff, logFC>0.26 or logFC<-0.26 and p-val<0.05, >2 genes changed) 

Pathway positive 

(r) 

measure

d (n) 

total % Z Score p-value 

(permuted

) 

Insulin Signaling 6 137 158 4,38% 2,24 0,019 

MAPK signaling pathway 6 140 161 4,29% 2,18 0,021 

G1 to S cell cycle control 4 59 67 6,78% 2,83 0,013 

DNA Replication 3 36 41 8,33% 2,90 0,020 

Renin - Angiotensin System 3 47 60 6,38% 2,32 0,035 

Urea cycle and metabolism 

of amino groups 

2 13 59 15,38% 3,62 0,004 

Eicosanoid Synthesis 2 18 35 11,11% 2,92 0,010 

Nuclear receptors in lipid 

metabolism and toxicity 

2 26 40 7,69% 2,22 0,027 

 
 
Annex Table 15: Pathways affected by a high dose of NM-202 measured at day 29 in rat liver (cutoff, 
logFC>0.26 or logFC<-0.26 and p-val<0.05, >2 genes changed) 

Pathway positive 

(r) 

measure

d (n) 

total % Z Score p-value 

(permuted

) 
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IL-5 Signaling Pathway 2 63 69 3,17% 2,52 0,045 

G Protein Signaling Pathways 2 77 96 2,60% 2,15 0,077 

 
 
Annex Table 16: Pathways affected by a high dose of NM-202 measured at day 85 in rat liver (cutoff, 
logFC>0.26 or logFC<-0.26 and p-val<0.05, >2 genes changed) 

Pathway positive 

(r) 

measured 

(n) 

tota

l 

% Z Score p-value 

(permut

ed) 

Myometrial Relaxation and 

Contraction Pathways 

6 120 158 5,00% 2,42 0,026 

MAPK signaling pathway 6 140 161 4,29% 2,00 0,030 

Endochondral Ossification 5 51 67 9,80% 4,04 0,001 

Fatty Acid Omega Oxidation 3 10 13 30,00% 6,36 0,001 

Prostaglandin Synthesis and 

Regulation 

3 30 37 10,00% 3,16 0,006 

Type II interferon signaling (IFNG) 3 30 35 10,00% 3,16 0,012 

Proteasome Degradation 3 46 60 6,52% 2,22 0,035 

Blood Clotting Cascade 2 18 21 11,11% 2,78 0,020 

Inflammatory Response Pathway 2 27 31 7,41% 2,03 0,080 

 
 
Annex Table 17: Pathways affected by a high dose of NM-202 measured at day 29 in rat jejunum 
(cutoff, logFC>0.26 or logFC<-0.26 and p-val<0.05, >2 genes changed) 

Pathway positiv

e (r) 

measu

red (n) 

total % Z 

Score 

p-value 

(permu

ted) 

Calcium Regulation in the Cardiac Cell 5 121 153 4,13% 2,67 0,015 

Alpha6-Beta4 Integrin Signaling Pathway 3 53 66 5,66% 2,72 0,030 

ATM Signaling Pathway 2 23 26 8,70% 3,04 0,021 

Monoamine GPCRs 2 29 41 6,90% 2,58 0,024 

 
Analysis of effects of silverions and silverparticles on rat liver and pbmcs (sub-chronic toxicity study) 
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Data was provided by van der Zande, RIKILT, Wageningen University, Wageningen, the Netherlands 
 
Annex Table 18: Pathways affected by NM300K (uncoated AgNP) measured at day 29 in rat liver 
(cutoff, logFC>0.26 or logFC<-0.26 and p-val<0.05, >2 genes changed) 

Pathway positive 

(r) 

measure

d (n) 

total % Z Score p-value 

(permute

d) 

Metapathway 

biotransformation 

5 93 144 5,38% 1,98 0,036 

Apoptosis 4 67 83 5,97% 2,00 0,039 

Nuclear Receptors 3 34 38 8,82% 2,53 0,022 

Striated Muscle Contraction 3 34 37 8,82% 2,53 0,018 

Glucuronidation 2 9 35 22,22% 3,96 0,005 

Fatty Acid Biosynthesis 2 17 35 11,76% 2,59 0,012 

Genetic alterations of lung 

cancer 

2 24 28 8,33% 1,96 0,053 

 
 
Annex Table 19: Pathways affected by AgNO3 (Ag ions) measured at day 29 in rat liver (cutoff, 
logFC>0.26 or logFC<-0.26 and p-val<0.05, >2 genes changed) 

Pathway positive 

(r) 

measure

d (n) 

total % Z Score p-value 

(permute

d) 

Cell cycle 10 71 89 14,08% 4,28 0,000 

Inflammatory Response 

Pathway 

4 27 31 14,81% 2,81 0,014 

Glutathione metabolism 3 19 45 15,79% 2,57 0,016 

ATM Signaling Pathway 3 22 26 13,64% 2,26 0,039 

p53 signal pathway 3 25 35 12,00% 1,99 0,036 

Glucocorticoid Metabolism 2 6 8 33,33% 3,60 0,005 

Estrogen metabolism 2 9 29 22,22% 2,74 0,018 

Keap1-Nrf2 2 12 16 16,67% 2,19 0,057 
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Serotonin and anxiety 2 12 16 16,67% 2,19 0,039 

 
 
Annex Table 20: Pathways affected by PVP (PVP-coated AgNP) measured at day 29 in rat liver (cutoff, 
logFC>0.26 or logFC<-0.26 and p-val<0.05, >2 genes changed) 

Pathway positive 

(r) 

measure

d (n) 

total % Z Score p-value 

(permute

d) 

Cell cycle 6 71 89 8,45% 3,79 0,000 

Calcium Regulation in the 

Cardiac Cell 

6 130 153 4,62% 2,05 0,029 

Toll-like receptor signaling 

pathway 

4 67 93 5,97% 2,24 0,040 

Beta Oxidation Meta Pathway 3 26 32 11,54% 3,38 0,016 

Fatty Acid Beta Oxidation 3 28 85 10,71% 3,20 0,009 

Nuclear receptors in lipid 

metabolism and toxicity 

3 29 40 10,34% 3,12 0,009 

p53 pathway 3 39 47 7,69% 2,46 0,028 

Keap1-Nrf2 2 12 16 16,67% 3,53 0,008 

EBV LMP1 signaling 2 15 22 13,33% 3,05 0,017 

Hedgehog Signaling Pathway 2 16 22 12,50% 2,92 0,016 

Eicosanoid Synthesis 2 17 35 11,76% 2,79 0,011 

Glutathione metabolism 2 19 45 10,53% 2,58 0,030 

 
 
Annex Table 21: Pathways affected by NM300K (uncoated AgNP) measured at day 29 in rat PBMCs 
(cutoff, logFC>0.26 or logFC<-0.26 and p-val<0.05, >2 genes changed) 

Pathway positive 

(r) 

measur

ed (n) 

total % Z Score p-value 

(permut

ed) 

Metapathway biotransformation 6 124 144 4,84% 3,10 0,004 

Electron Transport Chain 4 69 112 5,80% 2,95 0,006 
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GPCRs, Other 4 71 76 5,63% 2,88 0,008 

Oxidative phosphorylation 3 40 65 7,50% 3,12 0,007 

Cytoplasmic Ribosomal Proteins 3 42 89 7,14% 3,01 0,008 

Id Signaling Pathway 3 49 51 6,12% 2,67 0,022 

Aflatoxin B1 metabolism 2 6 13 33,33% 6,40 0,001 

Estrogen metabolism 2 13 29 15,38% 4,11 0,011 

Mitochondrial LC-Fatty Acid Beta-

Oxidation 

2 16 25 12,50% 3,61 0,005 

p53 signal pathway 2 28 35 7,14% 2,45 0,037 

Fatty Acid Beta Oxidation 2 31 85 6,45% 2,27 0,022 

 
 
Annex Table 22: Pathways affected by AgNO3 (Ag ions) measured at day 29 in rat PBMCs (cutoff, 
logFC>0.26 or logFC<-0.26 and p-val<0.05, >2 genes changed) 

Pathway positive 

(r) 

measur

ed (n) 

total % Z Score p-value 

(permut

ed) 

Prostaglandin Synthesis and 

Regulation 

6 31 37 19,35% 6,73 0,000 

Relationship between glutathione and 

NADPH 

5 54 98 9,26% 3,69 0,001 

Spinal Cord Injury 5 95 110 5,26% 2,18 0,030 

Eicosanoid Synthesis 4 19 35 21,05% 5,77 0,000 

Oxidative Stress 4 27 28 14,81% 4,62 0,000 

Complement and Coagulation 

Cascades 

4 56 63 7,14% 2,65 0,012 

Selenium Micronutrient Network  3 23 89 13,04% 3,67 0,000 

p53 pathway 3 44 47 6,82% 2,19 0,043 

Estrogen metabolism 2 13 29 15,38% 3,34 0,013 

Hedgehog Signaling Pathway 2 19 22 10,53% 2,57 0,043 
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Signal Transduction of S1P 2 23 25 8,70% 2,21 0,047 

ATM Signaling Pathway 2 24 26 8,33% 2,13 0,058 

Folic Acid Network 2 24 103 8,33% 2,13 0,019 

 
 
Annex Table 23: Pathways affected by PVP (PVP-coated AgNP) measured at day 29 in rat PBMCs 
(cutoff, logFC>0.26 or logFC<-0.26 and p-val<0.05, >2 genes changed)  

Pathway positive 

(r) 

measur

ed (n) 

total % Z Score p-value 

(permut

ed) 

Translation Factors 4 42 48 9,52% 3,57 0,007 

VEGF-receptor Signal Transduction 3 25 32 12,00% 3,64 0,003 

Notch Signaling Pathway 3 33 45 9,09% 2,98 0,010 

Cytoplasmic Ribosomal Proteins 3 42 89 7,14% 2,44 0,014 

ATM Signaling Pathway 2 24 26 8,33% 2,27 0,053 

p53 signal pathway 2 28 35 7,14% 1,99 0,062 

 


